Troisième Année Licence M.I.A.S.H.S. 2023 – 2024 Statistique 2

Examen terminal, Mai 2024

Examen de 2h00. Tout document ou calculatrice est interdit.

Exercice 1 (Sur 12 points)

Soit $X = (X_1, ..., X_d)$ un vecteur aléatoire à valeurs dans $\{e_1, ..., e_d\}$, où $(e_1, ..., e_d)$ est la base canonique classique de \mathbf{R}^d et tel que $\mathbb{P}(X = e_i) = p_i$ pour tout $1 \le i \le d$, où les $p_i \in [0, 1]$ sont tels que $p_1 + \cdots + p_d = 1$.

Notation: pour un vecteur colonne $U = {}^t(U_1, \ldots, U_d) \in \mathbf{R}^d$, on note $||U||^2 = {}^tUU = \sum_{k=1}^d U_d^2$, où tU est le vecteur transposé de U.

- 1. Déterminer la loi de X_i pour $1 \le i \le d$ (0.5pts).
- 2. Démontrer que pour $i \neq j$, X_i et X_j ne sont pas indépendantes (1pt).
- 3. Soit $r \in \mathbf{R}^d$ un vecteur colonne tel que ||r|| > 0. Montrer que P_r la matrice dans (e_1, \ldots, e_d) de la projection orthogonale sur la droite vectorielle engendrée par r est telle que $P_r = \frac{1}{||r||^2} r^t r$ (1pt). En notant $\{r\}^{\perp}$ le sousespace vectoriel orthogonal de $\{r\}$, déduire la matrice $P_{\{r\}^{\perp}}$ dans (e_1, \ldots, e_d) de la projection orthogonale sur $\{r\}^{\perp}$ (1pt).
- 4. On considère $Y = (Y_1, \ldots, Y_d)$ telle que $Y_i = \frac{X_i p_i}{\sqrt{p_i}}$ pour $1 \le i \le d$. Démontrer que Y est un vecteur centré de matrice de covariance $P_{\{r\}^{\perp}}$, où $r = {}^t(\sqrt{p_1}, \ldots, \sqrt{p_d})$ (1.5pts).
- 5. Soit $(Y^{(k)})_{k \in \mathbb{N}}$ une suite de vecteur aléatoire indépendants et identiquement distribués de même loi que Y. Soit $u = {}^t(u_1, \dots, u_d) \in \mathbb{R}^d$ et soit $Z_k = {}^tu\,Y^{(k)}$ pour $k \in \mathbb{N}$. Montrer que si u n'est pas colinéaire à r:

$$\sqrt{n} \, \overline{Z}_n \overset{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} \mathcal{N}(0, {}^t u \, P_{\{r\}^{\perp}} u) \quad \text{où} \quad \overline{Z}_n = \frac{1}{n} \, \sum_{j=1}^n Z_j \quad \textbf{(1pt)}.$$

En déduire que $\frac{1}{\sqrt{n}} \sum_{k=1}^{n} Y^{(k)} \xrightarrow[n \to \infty]{\mathcal{L}} S$, où S est un vecteur gaussien à valeurs dans \mathbf{R}^d centré de matrice de covariance $P_{\{r\}^{\perp}}$ (1pt).

- 6. Démontrer que $||S||^2 \stackrel{\mathcal{L}}{\sim} \chi^2(d-1)$ (2pts).
- 7. Soit $(W_k)_{k \in \mathbb{N}}$ une suite de v.a.i.i.d. telle que W_1 prend d valeurs possibles $\{w_1, \ldots, w_d\}$ et vérifie $\mathbb{P}(W_1 = w_i) = p_i$ pour $i \in \{1, \ldots, d\}$. En notant $\widehat{p}_i = \frac{1}{n} \sum_{k=1}^n \mathbb{I}_{W_k = w_i}$ pour $i \in \{1, \ldots, d\}$, en déduire

$$n\sum_{i=1}^{d} \frac{(\widehat{p}_i - p_i)^2}{p_i} \xrightarrow[n \to \infty]{\mathcal{L}} \chi^2(d-1) \quad \textbf{(3pts)}.$$

Proof. 1. X_i prend pour valeurs 0 et 1, elle suit donc une loi de Bernoulli $\mathcal{B}(p_i)$ puisque $\mathbb{P}(X_i = 1) = p_i$.

- 2. Pour $i \neq j$, $cov(X_i, X_j) = \mathbb{E}[X_i X_j] \mathbb{E}[X_i] \mathbb{E}[X_j] = 0 p_i p_j = -p_i p_j$ car si $X_i = 1$ alors $X_j = 0$ et réciproquement. Donc $cov(X_i, X_j) \neq 0$: les variables (X_i) ne sont pas indépendantes.
- 3. Une base orthonormale de la droite vectorielle engendrée par r est $(r/\|r\|)$. Or pour une projection orthogonale sur un sev F de base orthonormale (f_1, \ldots, f_d) alors pour tout $x \in \mathbf{R}^d$, $P_F(x) = \sum_{i=1}^p \langle x, f_i \rangle f_i$, où $\langle x, f_i \rangle$ est le produit scalaire de x et f_i . Par conséquent, ici on a $P_{[r]}(x) = \langle x, r \rangle r/\|r\|^2 = \|r\|^{-2}r^trx$. D'où le résultat. On sait que $P_{[r]}(x) + P_{\{r\}^{\perp}}(x) = x$ pour tout $x \in \mathbf{R}^d$, d'où $P_{\{r\}^{\perp}} = I_d \|r\|^{-2}r^tr$.
- 4. D'après ce qui précède $\mathbb{E}[Y_i] = (\mathbb{E}[X_i] p_i)/\sqrt{p_i} = 0$ pour tout i, le vecteur Y est bien centré. De plus, $\operatorname{var}(Y_i) = \frac{1}{p_i} \operatorname{var}(X_i) = 1 p_i$, et pour $i \neq j$, $\operatorname{cov}(Y_i, Y_j) = \frac{1}{\sqrt{p_i \, p_j}} \operatorname{cov}(X_i, X_j) = -\sqrt{p_i \, p_j}$. Or avec $r = {}^t(\sqrt{p_1}, \dots, \sqrt{p_d})$, on a $||r||^2 = 1$, donc $P_{\{r\}}^\perp = I_d {}^t(\sqrt{p_1}, \dots, \sqrt{p_d}) (\sqrt{p_1}, \dots, \sqrt{p_d}) = I_d (\sqrt{p_i \, p_j})_{1 \leq i,j \leq d}$. En conséquence, le terme de cette matrice pour i = j est $1 \sqrt{p_i \, p_i} = 1 p_i$ et pour $i \neq j$ il vaut $-\sqrt{p_i \, p_j}$: c'est bien la matrice de covariance de Y.

- 5. Il est clair que comme $(Y^{(k)})_k$ est une suite de vecteurs aléatoires i.i.d., alors $(Z_k)_k$ est une suite de v.a.i.i.d. De plus $\mathbb{E}[Z_1] = {}^t u \, \mathbb{E}[Y_1] = 0$ et $\operatorname{var}(Z_1) = {}^t u \operatorname{cov}(Y_1) \, u = {}^t u \, P_{\{r\}^{\perp}} \, u < \infty$. On peut donc appliquer le TLC et on obtient le résultat demandé. D'après le cours, on sait que la fonction caractéristique de $\frac{1}{\sqrt{n}} \sum_{k=1}^n Y^{(k)}$ est donnée pour tout u comme $\mathbb{E}\Big[\exp\Big(i\,\frac{1}{\sqrt{n}}\,\sum_{k=1}^n {}^t u\,Y^{(k)}\Big] = \mathbb{E}\Big[\exp\Big(i\,\sqrt{n}\,\overline{Z}_n\Big)\Big]$. Comme cette fonction caractéristique converge vers celle de $\mathcal{N}\Big(0\,,\,{}^t u\,P_{\{r\}^{\perp}}u\Big)$ pour presque tout u, on en déduit que $\frac{1}{\sqrt{n}} \sum_{k=1}^n Y^{(k)}$ converge en loi vers $\mathcal{N}_d\Big(0\,,\,P_{\{r\}^{\perp}}\Big)$.
- 6. On utilise le Théorème de Cochran car $S = P_{\{r\}^{\perp}} V$ avec $V \stackrel{\mathcal{L}}{\sim} \mathcal{N}_d \big(0 \, , \, I_d \big)$ puisque $P_{\{r\}^{\perp}}{}^t P_{\{r\}^{\perp}} = P_{\{r\}^{\perp}} P_{\{r\}^{\perp}} = P_{\{r\}^{\perp}} P_{\{r\}^{\perp}}$. Or $\dim(P_{\{r\}^{\perp}}) = \dim(\mathbf{R}^d) \dim([r]) = d 1$, donc $S \stackrel{\mathcal{L}}{\sim} \chi^2(\dim(P_{\{r\}^{\perp}})) = \chi^2(d 1)$.
- 7. Pour $k \in \mathbb{N}$, $X_i^{(k)} = \mathbb{I}_{W_k = i}$ pour $1 \le i \le d$. Alors on a bien $X^{(k)}$ qui a la même loi que X. Donc en considérant $Y^{(k)}$ tel que $Y_i^{(k)} = (\mathbb{I}_{W_k = i} p_i)/\sqrt{p_i}$, on peut appliquer le résultat du 5. Mais $\frac{1}{\sqrt{n}} \sum_{k=1}^n Y^{(k)} = \left(\sqrt{n} \left(\frac{\widehat{p_i} p_i}{\sqrt{p_i}}\right)\right)_{1 \le i \le d}$. On a donc:

$$\left(\sqrt{n}\left(\frac{\widehat{p}_i - p_i}{\sqrt{p_i}}\right)\right)_{1 \le i \le d} \xrightarrow[n \to \infty]{\mathcal{L}} S.$$

Enfin, la fonction $x \in \mathbf{R}^d \mapsto ||x||^2$ est une fonction continue, on peut donc l'appliquer à la convergence en loi précédente, ce qui donne le résultat demandé.

Exercice 2 (Sur 20 points)

Soit $\theta = (m, \lambda) \in \mathbf{R} \times]0, \infty[$. Considérons la fonction de répartition définie par:

$$F_{\theta}(x) = 1 - \exp(-\lambda(x - m))$$
 pour $x \ge m$.

- 1. Que vaut $F_{\theta}(x)$ pour x < m (justifier) (0.5pts)?
- 2. Montrer que F_{θ} est la fonction de répartition d'une v.a. "continue" dont on précisera la densité f_{θ} (1pt).
- 3. Soit X une v.a. "continue" de densité f_{θ} . Quelle est la loi de X-m (justifier) (1pt)?
- 4. Calculer $\mathbb{E}[X]$ et var(X) (1pt).
- 5. On suppose que m est inconnu et on considère $(X_i)_{i\in\mathbb{N}}$ des v.a.i.i.d. de même loi que X. On suppose (X_1,\ldots,X_n) observé. Quand λ est un réel donné connu, préciser le modèle statistique (0.5pts) et démontrer que l'estimateur du maximum de vraisemblance de m est $\widehat{m}_n = \min(X_1,\ldots,X_n)$ (2pts).
- 6. Déterminer la fonction de répartition de \hat{m}_n (1.5pts). Est-ce une v.a. "continue" (justifier) (0.5pts)?
- 7. Prouver que \widehat{m}_n est un estimateur biaisé de m (1pt).
- 8. Démontrer que $(\widehat{m}_n)_{n \in \mathbb{N}}$ converge en probabilité (1pt).
- 9. Soit $Z_n = n(\widehat{m}_n m)$. Montrer que Z_n suit une loi de probabilité bien connue (1pt). En déduire un intervalle de confiance de niveau 95% sur m dépendant de λ (1.5pts).
- 10. On considère maintenant que λ est également inconnu et on définit $\widehat{\lambda}_n$ estimateur de λ tel que:

$$\widehat{\lambda}_n = \frac{n}{\sum_{i=1}^n (X_i - \widehat{m}_n)}.$$

Démontrer un théorème de la limite centrale satisfait par les $(X_i - m)_i$ (1pt). Montrer que $\mathbb{E}[\sqrt{n} | \hat{m}_n - m|] \xrightarrow[n \to \infty]{} 0$ (0.5pts), et en déduire que pour tout $\lambda > 0$:

$$\sqrt{n}(\widehat{\lambda}_n - \lambda) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \lambda^2)$$
 (3pts).

11. En utilisant le quantile q d'ordre 97.5% d'une loi $\mathcal{N}(0,1)$, déterminer un intervalle de confiance asymptotique de niveau 95% pour λ (1.5pts). En déduire également un intervalle de confiance asymptotique de niveau 95% pour m s'écrivant sans que λ soit connu (1.5pts).

Proof. 1. Comme F_{θ} est positive et croissante, comme $F_{\theta}(m) = 0$, alors pour x < m, $F_{\theta}(x) = 0$.

2. Il est clair que pour x > m, F_{θ} est de classe C^{∞} , on vient de voir que pour x < m, elle l'est également car nulle. Et en x = m, F_{θ} est clairement continue. Donc F_{θ} est continue sur \mathbf{R} , et C^{1} par morceaux, donc c'est la fonction de répartition d'une variable "continue" et sa densité est:

$$f_{\theta}(x) = \lambda \exp(-\lambda(x-m)) \mathbb{I}_{x \geq m}.$$

- 3. Soit Y = X m. Alors Y prend ses valeurs dans \mathbf{R}^+ . De plus pour $y \ge 0$, $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X \le y + m) = F_{\theta}(y + m) = 1 \exp(-\lambda y)$: il s'agit de la fonction de répartition d'une loi exponentielle de paramètre λ .
- 4. On sait que $\mathbb{E}[Y] = 1/\lambda$ et $\operatorname{var}(Y) = 1/\lambda^2$, donc $\mathbb{E}[X] = m + 1/\lambda$ et $\operatorname{var}(X) = 1/\lambda^2$.
- 5. Comme on suppose que λ est connu, le modèle statistique est paramètrique et s'écrit $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), \mathbb{P}_m^{\otimes n}, m \in \mathbf{R})$, avec \mathbb{P}_m la mesure de probabilité de X.

La vraisemblance va s'écrire en fonction de m. Pour $(x_1,\ldots,x_n)\in\mathbf{R}$, grâce à l'indépendance et l'identique distribution, on a:

$$L_m(x_1,\ldots,x_m) = \prod_{j=1}^n \lambda \, \exp\left(-\lambda(x_j-m)\right) \mathbb{I}_{x_j \ge m} = \lambda^n \, \exp\left(-\lambda \sum_{j=1}^n (x_j-m)\right) \mathbb{I}_{\min(x_1,\ldots,x_n) \ge m}.$$

Donc en tant que fonction de m, $L_m(x_1, ..., x_m) = 0$ si $m > \min(x_1, ..., x_n)$ et $L_m(x_1, ..., x_m) = \lambda^n \exp\left(n \lambda m - \lambda \sum_{j=1}^n x_j\right)$ si $m \le \min(x_1, ..., x_n)$, qui est clairement une fonction strictement croissante en m. Donc le maximum de $L_m(X_1, ..., X_m)$ est atteint en $\widehat{m}_n = \min(X_1, ..., X_n)$.

6. La variable \widehat{m}_n prend ses valeurs dans $[m, \infty[$. Donc pour x < m, alors $F_{\widehat{m}_n}(x) = 0$. Pour $x \ge m$, on a:

$$F_{\widehat{m}_n}(x) = 1 - \mathbb{P}(\widehat{m}_n > x) = 1 - \mathbb{P}(X_1 > x \cap X_2 > x \cap \dots \cap X_n > x) = 1 - \left(\exp\left(-\lambda\left(x - m\right)\right)\right)^n = 1 - \exp\left(-n\lambda\left(x - m\right)\right),$$

en utilisant le fait que les (X_i) sont des v.a.i.i.d. On obtient ainsi une fonction dérivable sur $]m, \infty[$, nulle sur $]-\infty, m[$ et continue en m (on obtient 0 dans les 2 cas). Il s'agit donc de la fonction de répartition d'une variable "continue".

- 7. Il est clair que la fonction de répartition de \widehat{m}_n est celle de X en lorsque λ est remplacé par $n\lambda$. Comme on a obtenu $\mathbb{E}[X]$ précédemment, on peut directement écrire que $\mathbb{E}[\widehat{m}_n] = m + \frac{1}{n\lambda}$: l'estimateur est biaisé car $\mathbb{E}[\widehat{m}_n] \neq m$ (mais asymptotiquement non biaisé).
- 8. Grâce à $\operatorname{var}(X)$ calculée précédemment, on déduit sans calcul que $\operatorname{var}(\widehat{m}_n) = \frac{1}{n^2 \lambda^2}$. Par conséquent $\operatorname{var}(\widehat{m}_n) \xrightarrow[n \to \infty]{} 0$ et comme \widehat{m}_n est asymptotiquement non biaisé, on en déduit que $\widehat{m}_n \xrightarrow[n \to +\infty]{} m$: l'estimateur est convergent.
- 9. Il est clair que $Z_n = n (\widehat{m}_n m)$ prend ses valeurs dans $[0, +\infty[$. Pour $z \ge 0, F_{Z_n}(z) = \mathbb{P}(n (\widehat{m}_n m) \le z) = \mathbb{P}(\widehat{m}_n \le m + z/n) = 1 \exp(-\lambda z)$: il s'agit de la fonction de répartition d'une loi exponentielle de paramètre λ . On sait que $\widehat{m}_n \ge m$ et donc $\mathbb{P}(m \le \widehat{m}_n \le m + z/n) = 1 \exp(-\lambda z)$. Donc si on choisit que cette probabilité vaille 0.95, on obtient l'intervalle de confiance demandé. Pour cela, il suffit de choisir z tel que $1 \exp(-\lambda z) = 0.95$, soit $-\lambda z = \ln(0.05)$, d'où $z = \ln(20)/\lambda$. Par conséquent un intervalle de confiance de niveau 95% sur m est:

$$\left[\widehat{m}_n - \frac{\ln(20)}{\lambda n}, \widehat{m}_n\right].$$

10. Les $(X_i - m)_i$ sont des v.a.i.i.d. de même loi $\mathcal{E}(\lambda)$, donc d'espérance $1/\lambda$ et de variance finie $1/\lambda^2$, et ainsi on peut appliquer le TLC:

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - m) - \frac{1}{\lambda}}{\frac{1}{\lambda}} = \sqrt{n} \left(\frac{\lambda}{n} \sum_{i=1}^{n} (X_i - m) - 1 \right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

On sait que $n\left(\widehat{m}_n - m\right) \stackrel{\mathcal{L}}{\sim} \mathcal{E}(\lambda)$, donc $\mathbb{E}\left[n\left(\widehat{m}_n - m\right)\right] = \sqrt{n}\,\mathbb{E}\left[\sqrt{n}\left|\widehat{m}_n - m\right|\right] = 1/\lambda$. On en déduit donc que $\mathbb{E}\left[\sqrt{n}\left|\widehat{m}_n - m\right|\right] = 1/(\lambda\sqrt{n}) \xrightarrow[n \to \infty]{} 0$.

On peut réecrire le TLC précédent sous la forme:

$$\sqrt{n}\left(\frac{\lambda}{n}\sum_{i=1}^{n}(X_i-\widehat{m}_n)-1\right)+\lambda\sqrt{n}\left(\widehat{m}_n-m\right) \xrightarrow[n\to\infty]{\mathcal{L}} \mathcal{N}(0,1).$$

Or d'après ce qui précède, l'inégalité de Markov permet de montrer que $\sqrt{n} \left(\widehat{m}_n - m \right) \xrightarrow[n \to +\infty]{\mathcal{P}} 0$. Donc en utilisant le Lemme de Slutsky, on obtient:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}(X_i-\widehat{m}_n)-\frac{1}{\lambda}\right) \xrightarrow[n\to\infty]{\mathcal{L}} \mathcal{N}\left(0,\frac{1}{\lambda}^2\right).$$

On peut maintenant appliquer la Delta-méthode avec g(x) = 1/x qui est bien de classe C^1 avec $g'(1/\lambda) = \lambda^2$, d'où le TLC demandé.

11. D'après le TLC précédent, on a $\hat{\lambda}_n \xrightarrow[n \to +\infty]{\mathcal{P}} \lambda$. On peut donc utiliser le Lemme de Slutsky et obtenir le TLC 2 suivant:

$$\sqrt{n} \frac{\widehat{(\lambda_n - \lambda)}}{\widehat{\lambda_n}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

On en déduit l'intervalle de confiance asymptotique à 95% suivant

$$\left[\widehat{\lambda}_n - q \, \frac{\widehat{\lambda}_n}{\sqrt{n}} \, , \, \widehat{\lambda}_n + q \, \frac{\widehat{\lambda}_n}{\sqrt{n}} \right].$$

Par ailleurs, on peut également utiliser la convergence en loi précédente $n\left(\widehat{m}_n-m\right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{E}(\lambda)$, ce qui revient à $n \lambda \left(\widehat{m}_n-m\right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{E}(1)$. Comme $\widehat{\lambda}_n \xrightarrow[n \to +\infty]{\mathcal{P}} \lambda$, on peut encore utiliser le Lemme de Slutsky et obtenir:

$$n \widehat{\lambda}_n \left(\widehat{m}_n - m \right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{E}(1).$$

D'où l'intervalle de confiance asymptotique à 95% suivant:

$$\left[\widehat{m}_n - \frac{\ln(20)}{n\,\widehat{\lambda}_n}\,,\,\widehat{m}_n\right].$$